By Administrador CEUPE on Viernes, 03 Noviembre 2023
Category: TECNOLOGÍA

¿Qué estudiar para ser analista de datos?

Un analista de datos o data analyst es un profesional versado en explorar grandes cantidades de datos para descubrir patrones, correlaciones y tendencias. Su objetivo es traducir esta información en conclusiones claves para ayudar a la toma de decisiones estratégicas y operativas dentro de una organización. Asimismo, este perfil utiliza herramientas analíticas y habilidades estadísticas para extraer conocimientos valiosos a partir de la vasta cantidad de datos disponibles.

¿Te gustaría ser uno? A continuación te lo explico.

¿Cómo ser analista de datos?

1. Estudia una carrera universitaria (opcional)

Aunque no es estrictamente necesario tener una carrera universitaria para ser analista de datos, algunas empresas pueden tener cierta inclinación en contratar aquellos candidatos que poseen un título universitario, sobre todo, perfiles que tienen un grado en áreas como la estadística, las matemáticas, la informática, o las ciencias de la computación.

Ahora, si bien es cierto que hacer una carrera universitaria puede proporcionarte unos conocimientos bases que pueden ser útiles para el análisis de datos, el trabajo que queda por delante para convertirte en un profesional del área sigue siendo considerable. La universidad es un plus, pero no una garantía.

Dicho esto, veamos qué carreras son las que más te pueden interesar para ser un data analyst en el futuro.

Carreras universitarias que te ayudarán en tu camino para ser analista de datos

2. Desarrolla una base sólida en estadística y matemáticas

Un buen analista de datos debe tener una sólida base en estadística y matemáticas. Esto es así, ya que unos fuertes conocimientos en estas áreas te brindarán la base teórica necesaria para que puedas afrontar de manera apropiada los complejos desafíos que surgen al trabajar con ingentes cantidades de datos.

Conocimientos como probabilidad, álgebra lineal, cálculo, regresión lineal y no lineal, e inferencia estadística, son algunas de las bases fundamentales que un analista de datos debe poseer.

Otros conocimientos, incluyen: análisis multivariado, teoría de muestreo, álgebra matricial, teoría de la información, procesos estocásticos y modelado matemático.

3. Aprende lenguajes de programación comúnmente usados en el análisis de datos

Para trabajar con datos, es necesario dominar ciertos lenguajes de programación. Algunos de los más usados en el ámbito, son:

4. Adquiere la habilidad de manipular datos

La habilidad para manipular datos es una destreza primordial en el repertorio de un analista de datos. Básicamente, tendrás que aprender a limpiar, procesar, y transformar datos para que te asegures que estén listos para su posterior análisis.

La manipulación de datos alude a la capacidad de transformar conjuntos de datos crudos en formatos más estructurados y manejables. Esto abarca la combinación de conjuntos de datos, la extracción de características relevantes y la reorganización de la información para facilitar su análisis. Un analista de datos habilidoso debe ser capaz de utilizar herramientas como SQL, Python o R para llevar a cabo estas operaciones.

Por otro lado, la limpieza de datos se centra en identificar y abordar problemas en los conjuntos de datos, como valores atípicos, errores de entrada o valores faltantes. Tratar con estos desafíos es altamente importante, ya que va a garantizar la integridad de los resultados analíticos. La capacidad de imputar valores faltantes de manera adecuada y manejar excepciones mejora la robustez de los análisis subsiguientes.

5. Obtén la destreza de representar datos gráficamente

Cuando ya se han procesado los datos, estos deben materializarse visualmente en tablas, gráficos, diagramas, u otras representaciones visuales útiles, de tal manera que puedan ser comprensibles por diferentes audiencias. Para ello, es necesario dominar ciertas herramientas de data visualization, tales como: Seaborn, Plotly, Bokeh, o Matplotlib (todas de Python), o ggplot2 (de R).

6. Familiarízate con el Machine Learning (o Aprendizaje Automático)

No hay ningún analista de datos que no se beneficie de tener conocimientos en Machine Learning para aprovechar técnicas más avanzadas de análisis de datos. Dentro de esta esfera, el ML permite automatizar la identificación de patrones, prever tendencias y realizar predicciones basadas en conjuntos de datos. Además, el aprendizaje automático ayuda en el descubrimiento de relaciones complejas y en la proporción de insights de gran valor que podrían ser difíciles de obtener mediante métodos analíticos tradicionales.

7. Estudia una maestría relacionada con el análisis de datos

Si así lo quieres, una buena forma de potenciar tu perfil profesional y especializarte en el área, es a través de un programa de maestría. Esta opción, al igual que como sucede con la carrera universitaria, es opcional. Es decir, no necesitas una maestría o un máster para trabajar como analista de datos.

No obstante, dado que estamos hablando de un posgrado (una formación especializada), esta posibilidad podría facilitarte el camino, no únicamente en el desarrollo de habilidades, sino también en la consecución de un perfil más diferenciador. En el mundo laboral, la posesión de un posgrado, como una maestría, es altamente valorable. En este sentido, podría interesarte una maestría que tenga relación a este campo, como las siguientes:

8. Consigue experiencia profesional

Conseguir trabajo sin experiencia siempre es difícil, y en el campo del análisis de datos no es la excepción. Por tanto, para ganar experiencia como analista de datos, es fundamental enfocarse en dos áreas clave. Primero, involúcrate en proyectos de análisis de datos, ya sea de forma personal o colaborativa, para ganar experiencia y mostrar, de paso, tus habilidades. Construir un portafolio que destaque tu capacidad para trabajar con datos del mundo real también puede serte de gran ayuda.

En segundo lugar, busca oportunidades como pasantías o puestos de nivel inicial, donde puedas aplicar tus habilidades en un entorno profesional y reunir experiencia práctica.

En resumen, los requisitos para ser analista de datos, son:

  1. Estudia una carrera universitaria (opcional)
  2. Desarrolla una base sólida en estadística y matemáticas
  3. Aprende lenguajes como Python, R, SQL y MATLAB.
  4. Adquiere la habilidad de manipular datos
  5. Obtén la destreza de representar datos gráficamente
  6. Familiarízate con el Machine Learning
  7. Estudia una maestría relacionada con el análisis de datos
  8. Consigue experiencia profesional

Para aquellos interesados en estudiar una maestría, el Centro Europeo de Postgrado (CEUPE) posee entre su oferta formativa una Maestría en Ciencia de Datos para Negocios (Big Data & Business Analytics), que permite, entre otros roles, trabajar como analista de datos.

Leave Comments